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FOREWORD

As a sequel to the first two reports, which are concerned with the

steady-state effective transverse thermal conductivities in fibrous

composites, the present investigation deals with transient heat flow

in composite materials. This effort, being a first phase in the

transient analyses, considers composite materials with uni-directional

fibers or those composed of alternate layers of two different materials.

Heat flow in the direction of the fibers or in the stacking plane

of the laminations is analyzed.

The study of heat flow phenomena in composites was financially

supported by the Air Force Office of Scientific Research through a

grant (AFOSR-78-3640), and was technically monitored by Mr. Nelson

Wolf and Lt Kay Bryan of AFFDL/FIBRA, Flight Dynamics Laboratory,

WPAFB, Dayton, Ohio. The author of this report gratefully acknowledges
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NOMENCLATURE

a half-thickness of a laminate; radius of a fiber or two

a non-dimensional, (a/L)

A generalized Fourier coefficient, Appendix C

b half-thickness of a laminate-section; radius of a
matrix cell

non-dimensional, (b/L)

c specific heat

B generalized Fourier coefficient, Appendix C

E generalized Fourier coefficient, Appendix C

g intermediate function as defined

G generalized Fourier coefficient, Appendix C

H intermediate function of a, see Equations 111-13 and
IV-13; also generalized Fourier coefficient, Appendix C

i, j integer indexes, Appendix C

k thermal conductivity

L transverse conductance parameter, see Equations

111-18 or IV-18; also length of fiber, Appendix C

m, n integer indexes, Appendix C

P intermediate parameter, see Equation 11-22

Q surface heat flux

R thero capacity ration, see Equation 111-17

s intermediate function

S generalized Fourier coefficient, Appendix C
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NOMENCLATURE (CONCLUDED)

T temperature rise

T transverse average temperature

x axial coordinate along laminate or fiber

7 (x/a); (x/L) in Appendix C

(y/a); (y/L) in Appendix C

Yfunction of -y, Appendix C

xli



Greek Letters

thermal diffusivity, (k/pc)

heat penetration depth

B transverse time-parameter; also eigenvalue, Appendix C

* intermediate function

y axial time-parameter

Aintermediate function; thermal conductivity ratio
(transverse/axial), Appendix C

e time

-2 2I non-dimensional time (ale/a ); (ai0/L2), Appendix C

n similarity variable, n =x/2r6

p density

Subscripts

1 refers to fiber material

2 refers to matrix material

refers to infinity, or a reference
condition (f ®)

I refers to interface

0 refers to small times
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I. INTRODUCTION

In this grant study of heat conduction in composite materials,

several phases of investigation were started in different stages of

the grant period. These phases are individually self-contained from a

technical viewpoint, but are related to one another in an overall sense.

They are either sequential or proceed in parallel paths leading to a

common objective.

For steady-state applications and for the purpose of acquiring a

basic data bank, a methodology to analyze the effective transverse

thermal conductivities of composites consisting of uni-directional

fibers was developed in Phase I (AFWAL-TR-80-3012, Han and Cosner).

Extensive calculations were performed to obtain accurate values for

the transverse conductivities of composites with various packing

densities, dispersion patterns and tow-matrix conductivity ratios.

The large amount of data-heretofore unavailable, but generated in

Phase I - was used subsequently by Zimmerman in a Phase II report

(AFWAL-TR-80-3155, R. H. Zimmerman) in which the then-existing predictive

schemes were examined in detail. Using the accurate data from Phase I

as a base, prior simplified predictive equations were modified to

extend their ranges of validity. Above all, a unified approach to

predict the effective transverse (to fibers) conductivities was

achieved with accuracy of 5 to 10 per cent. Zimmerman's work was

significant in its comprehensiveness and definitiveness of its

conclusions.
1



As thermal transients are a crucial concern in the analysis of

thermal stresses and strains - such as delamination - investigations

on thermal transients were initiated in this grant study, and they

were pursued in several tasks. One task is concerned with the

experimental determination of directional thermal conductivities

and thermal diffusivities of fibrous materials. The purposes of this

task are two-fold: (1) to evolve a simple and reliable experimental

technique, and (2) to acquire basic data for graphite/epoxy composites,

with future extensions to other (metallic) composites. This phase of

work will be documented in a separate report shortly.

A second task is concerned with the development of a simplified

method of calculating transient temperature distributions in composites

with problems involving heat flows along the uni-directional fiber as

a starting point. This task is motivated by the fact that rigorous

solutions of the governing diffusion equations for different media

in composites are conceptually speakinq possible, but practically

speaking prohibttive. The methodology developed is that of a heat-

balance integral method - a concept whose origin lies in the work of

von Karman on the analysis of boundary layer flows.

Transient heat flow analyses in composite bodies are not new; they

date back to one hundred years. The early work and the majority

of current efforts are largely patterned after classical methods of

analysis for simplified geometries. Even for simplified geometries,

the mathematical complexities are quite forbidding. For example, the

use of the Laplace transform method to two-phase problems often results

2l
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in solving a non-linear algebraic equation for the transform parameter.

Numerical implementation of its solution necessitates various kinds of

perturbation analyses, and the amount of labor required renders these

conceptually elegant and exact method much less elegant and less exact,

when translated into a practical level. Hence, a need exists for a

more pragmatic approach which is more accessible to design engineers

confronted with thermal problems of composites. The contents of this

report are a first step to achieve the goal.

Presented in thib phase III report is the development of a heat-

balance integral method for the analysis of thermal transients in

composites with two different media. As an initial attempt, the

integral-method is applied to heat flow problems in composites

comprised of two different laminated materials, and in composites with

uni-directional fibers dispersed evenly in a binding matrix. Heat

flow takes place along the fiber axial direction or in the plane of

laminations due to a step-rise in the surface temperature or a step-

rise of the surface heat flux. The latter is the most commonly

encountered boundary condition and is the most practical one to

consider. Problems with more involved boundary conditions can be

constructed on the basis of a combination of these two fundamental

solutions.

It is, of course, recognized that the heat-balance integral method

is intrinsically approximate but with increasing accuracy as the

trial functions - to be explained later in this report - satisfy more

secondary boundary conditions. Therefore, in order to establish and

3



confirm its usefulness, it is necessary to compare with available exact

solutions for the problems considered. Consequently, exact solutions

of thee types of problems described earlier form the core objective of

another task of the grant study. The rigorous solution is either in

the form of analytical developments or in the form of numerical

solutions with both approaches revealing the micro-structural

temperature distributions. It is to be emphasized that the detailed

computations of micro-structure temperature-time histories are not an

end by itself. They serve a purpose of identifying where the

heat-balance integral-method may be deficient and therefore requires

further refinements. A report outlining this particular phase of work

should be completed soon after this report is available.

4
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II. TWO QUARTER-INFINITE REGIONS

As an introductory illustration of approximate analyses of heat

flow in composites, consider the problem of two quarter-infinite regions

of two different materials, I and 2, occupying the right-hand side of the

y-axis in a x-y space (See Figure ll-1). In the first quadrant,

material 1 has physical properties designated by kl, Pit and cI and in

the fourth quadrant material 2 has properties of k2, P2 ' and c2 .

With both regions initially at a uniform temperature (considered

zero), it is desired to determine the temperature responses in these

two regions when the temperature on the surface x = 0 is impulsively

raised to a finite value or is given an impulsive heat flux. The key

feature of the problem is of course the interface at y = 0 across

which inter-region heat conduction affects the respective temperature

distributions in the vicinity of the interface. Although this particular

heat conduction problem has been elegantly studied by Grimado (Quarterly

of Applied Mathematics p.379, Jan. 1954), the results obtained by him

are not readily usable from an engineering viewpoint. With a minimum

of complications, this example problem serves to illustrate the essential

features of the heat-balance integral method, which are applied to

problems with more practical interest in Sections III and IV.

5 A
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Material 1, k1,p,,C1

Material 2, k 2, P2, C2

Figure 11.1. Schematic of Two Quarter-
infinite Regions

6



11.1 CONSTANT SURFACE-TEMPERATURE SOLUTIONS

In each region away from the interface, the temperature response

is asymptotically identical to that in a semi-infinite region. These

asymptotic solutions, valid for IYj , are:

TI_ = 2R f e-n2 dn (II-l)

T 2 - I e -dn (11-2)

It is of interest to note that it is possible to have two materials with

equal diffusivity (al . C2
) such that Equations II-1 and 11-2 are

identical. In this case, no interface distortion would result. Our

interest is of course the general case when a 1 a2"

When al # O2' the temperature responses given by Equations II-1

and 11-2 cannot be valid in a region near the interface y = 0. The

temperature distribution is in a transition stage from T1 _, at y=

through the interface and then to T2. at y - --. Figure II.2a

illustrates such a distribution. The purpose of an approximate analysis

is to determine the transitional temperature distribution.

7
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Figure II.2a. Temperature Distributions in Two
Quarter-infinite Regions.



Figure II.2b. Temperature Profile
Cross-section
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Shown in Figure II.2b is a cross-sectional view of the

temperature surface in Figure II.2a. The temperature distribution

in each region is conceptualized into two zones: (i) a boundary

zone of width A and (ii) the rest of the region. In the boundary zone,

temperature varies from an interface temperature Ti to the fully

established value corresponding to either one of Equations II-1 and

11-2. In other words, the distribution is simplified by the

discretized quantity A1 or A2 such that only near the interface

does the temperature undergo a transition from one established

value to another.

Suggested in Figure II.2b are therefore two boundary zones

A1 and A2, and within them, the temperature distributions for

materials I and 2 are given by the following:

T1  Ti + (T 1 " T )F(Yl/AI) (11-3)

= Ti + (T2 - - Ti)F(y 2/A2 ) (11-4)

Note that the same functional combination is used on either side

of the interface. Equations 11-3 and 11-4 are of course limited

to the boundary zones; outside, the temperatures T1 and T2 are

equal to TI. and T2 .c directly. The latter requirement leads to

the boundary condition on F at y, = A1 or Y2 = A2 :

F(l) 1 (II-Sj

10



In Equations 11-3 and 11-4, the common interface temperature

is denoted by Ti, which both T, and T2must assume when y, a y2 =0.

This then requires:

F(O) = 0 (11-6)

Finally of course is the equality of the heat flux at the

interface, expressed by:

k~~ ~ I (aT 2/ayl)+k2(TP 2) 0

Differentiating Equations 11-3 and 11-4 and putting y, =y 2 =0'

there results:

T, [(k1/A1 )T1 _, + (k 2/A2)T2 -,]/ [(k/A 1 ) + (k2/&2)] (11-7)

-Ilk -MI
11k



II-2 THE HEAT-BALANCE INTEGRAL-METHOD

The governing differential equations for both regions are of

course the diffusion equations:

(aT 1 /ae) a 1 V
2T1  (11-8)

(3T2/ae) = a2V2T2  (11-9)

Since the above equations are satisfied by Tl_, and T2.co defined by

Equations II-I and 11-2 for these two separate regions (each in a

semi-infinite domain), Equations 11-8 and 11-9 can also be written

in terms of the respective differences (T1 - Tl_,) and (T2 - c),

thus resulting in:

[T - T1 = clV2[T!_o - T11 (II-10)

a [T T2
W[2 - T2 ] c 2V[T2 . - T2 ] (I-11)

As the central idea of the heat-balance integral-method is

that a differential equation Is satisfied on the average while the

boundary conditions are fulfilled through appropriate functional

forms. Hence, by integrating Equation II-10 from yl a 0 to

Y I C the result is: 12

12



0a C 2  00
6 f(T I  - TI)dyI - ct1- J (TI -TI)dy I

0 0

@ayl,[T I - o  T1 ]Y 1=0 (I-2

A similar equation is obtained starting from Equation II-11; the

resulting equation is obtainable from Equation 11-12 by changing

the subscript 1 to 2.

Now, the distribution function F can be chosen to conform

with the requirements enumerated before. A popular choice in

viscous boundary layer analyses is the following:

F(y 1/Al) =2---- 1 -. (11-13)

In the preceding expression, the heat penetration depth A1 is

considered a function of time only and so is A2. From Equations

11-3 and 11-7, the temperature difference is given as:

TI_- T, = [T1 _ - T2 .]l - F(yl/A 1 )]/[1 + (kl/k 2)(A2/Al)] (11-14)

13



Equation 11-12 then becomes:

(3A 1/8) .. [T1  - T2 ,[1 + ('I /k2)(A21AI)] -- 2-c

+ T1 - TZ _e] + ( 1 + (k/2)(2 /,A,

C 3A 1 /8 2
= Ii + (kllk2)(A2/Al)]=- [TI-CO" T 2-1

3/ (261 )
+ ' [I + (k l /k)(A/A]T1- 1 - (2--15)

With TI. ® and T 2 - given by Equations II-1 and 11-2, the heat-

balance Equation 11-15 is integrated once again from x = 0 to x =

producing:

3A 1/8 y- + + 3A, / 8
(i+ k1/ t, "{- /,,g'2 + 2/6( -)236, L (]/Z(A/1
[1+(Ik2) (A2/AI /CI r2F11+K1/ 2(2a)

3 (2A )I

+ a, k 23/((2 1" (11-16)

14
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There is another equation, similar to Equation 11-16, obtained by

interchanging the indexes 1 and 2 in Equation 11-16.

To solve for L! and A2 as to how they change with time 0, let:

A S.1t 1O (11-17)

A2  S s2 - (11-18)

where S1 and S2 are coefficients to be determined. Implicit in

the preceding relations is the fact that (A2/Al) is a constant,

independent of time. The numerical coefficients S and S2 can then

be immediately obtained as:

S = 8/[2 + ra7- (11-19)

s= 8/[2 + -1 (11-20)

which define the extents of the two boundary zones on either side of

the interface. At the interface, the temperature is given by

Equation 11-7 which can be written as:

T= (T1. + PT2.]/[I + P] (11-21)

15



where:

P , (k2 /k 1 )(A1 /A2 )

(k 2/k 1) Aci1f 2 ((2 + 7(271-~)/ ( 2 + A 1 2 (11-22)

The ratio of these two penetration depths (AI/A 2) is given by:

r1/2

I a- T 7_ 2 +7a7-2-1 (11-23)

11.3 THE COMPLETE TEMPERATURE REPRESENTATION

The temperature distributions in the two quarter-infinite

regions, 1 and 2, are now defined by:

(i) Equations ll-1 and 11-2 remote from the interface. They

are of course the well-known error functions in terms

of the similarity variables X/2v' and x/2 7.

(II) Equations 11-3 and 11-4 near the interface within finite

distances A1 and A2 from the interface. The functional

form F(yl/A l ) or F(y2/A2 ) is that of Equation 11-13, and

the time-dependent zone depths Al and A2 are given by

Equations 11-17 through 11-20.

(ill) Equation 11-21 for the interface temperature T. The

parameter P is indicated in Equation 11-22.

16



In order to bring all equations to a common basis, a similarity

variable n, is defined as:

x

and the fully-established temperatures T,_. and T2_. are expressed by:

-cc0 erfc(n l) (11-24)

T2_0 = erfc( ) (11-25)

With the above definitions and unifications, numerical results are

illustrated for the following combinations of the physical properties:

kl/k 2 = 5, c2/a, = 0.3

for which the parameter P becomes 0.298, and (A = 1.48.

In Figure 11.3 are shown the established temperature distributions

away from the interface and the interface temperature Ti calculated

from Equation II-21 for the parametric values specified above. The

interface zones have their respective temperature variations indicated

in Figure 11.4 with the ordinate values i.e. Tl.. , Ti, and T2.- chosen
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Figure II.4. Cross-sectional Temperature Distribution in Interface

Region. Ordinate values for n, - .5 (kl/k 2 - 5,

ct2/a l 0.3, Constant Surface Temperature)
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for X/241 = 0.5, while the abscissa is universally valid for the

parameters so chosen. The discontinuity of the temperature gradient

at the interface y = 0 is clearly defined.

11.4 CONSTANT HEAT-FLUX SOLUTION

For the case in which a constant (equal in both regions) heat

flux is imparted to the exposed surface x = 0, the solution method

is quite similar, but with the exception that the fully-established

solutions, instead of Equations 1I-I and 11-2, are now given by:

T 2 _Q/6M ierfc x(11-26)

T.. 2 ierfc x (11-27)
2 2/ /-2

where Q denotes the surface heat flux, which in this illustrative

case is the same for both regions (this is not necessary for the

method to work).

Subsequent developments are identical up to and including

Equation 11-15 which upon integration from x = 0 to x yields

the following equation:

20



(3AI1/l6)((c,/k I) - (CL2/k2 )]/(1 + (kl/k2)(A21A)

+ r/(3/16)[(al/kl) - (- 2 k2  { Al/[ + (klA /A

= 1  / 1 6 ) 1( 1/ k ) - (l/k 2 )]/[1 + (kl/k2)(A2/A 1 ) 1

+ a1 (3/4Al)e[(l/kl) " 2 k 2 )]/I + (kl/k 2 )(A2/Al)] (11-28)

There is another equation obtained by starting with Equation II-11 in

region 2. Integrating Equation II-11 from Y2 = 0 to y2 
= " an

equation similar to Equation 11-15 is obtained. Further integration

from x = 0 to x = - results in an equation which is a companion to

Equation 11-28 and can be obtained from Equation 11-28 by interchanging

the indexes 1 and 2.

It is of importance to note that inter-region conduction is

manifested in the last term of equation 11-15 in the form of

(T1 00 - T2 --). The inter-region conduction influence, which modifies

the temperature distribution near the interface, has now been summed

up from x = 0 to x = - and is identified in Equation 11-28 as being

proportional to (a1/k1 - a 2/k2). There could be cases depending

on the thermo-physical properties of the media so that the integrated

sum of the inter-facial heat conduction becomes zero. This occurs

when p1c1 a P2c2. Figure 11.5 illustrates this particular combination

which is due to a reversal of the transverse heat conduction. At or

21



near this condition, the analysis of axial heat-balance integral

would be quite inaccurate and a modification of the method is

necessary.

The cause of trouble as revealed in Figure 11.5 leads to an

obvious remedy. Instead of integrating Equation 11-15 and its

companion (obtained by interchanging the indexes 1 and 2 in Equation

11-15) from x = 0 to x = , two heat-balance integrals are obtained

from each of these two equations. One is obtained from x = 0 to

x = x0, the cross-over point in Figure 11.5 and the other is obtained

from x = x0 to x . In this way, cancellation of the transverse

conductance is prevented, and the conduction effect is duly accounted

for in each range. In each range then, variations of AI and A2

with time are determined. It is to be noted that the time-variation

of A1 or A2 in the first range (x = 0 to x = x0 ) may be at variance

with the time-variation in the second range (x > x0 ). The discrepancy

between the values on either side of the cross-over point is not

detrimental to a smooth transition of the temperature at the cross-

over point, since at the latter there is no inter-region temperature

difference or in other words the heat penetration depths A1 and A2

are moot at this location.
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III. PARALLEL HEAT FLOW IN LAMINATED COMPOSITES

Consider a laminated composite consisting of two alternate layers

of two different materials and occupying a half-space x > 0. For heat

flow along the x-direction, a unit-cell can be isolated from the

assembly and the cell consists of a half-lamination of material I

adjoint to a half-lamination of material 2. Figure III. depicts

such an arrangement.

The boundary conditions on the symmetry surfaces, y = 0 and y = b,

are of course zero heat-conduction. The interface boundary conditions

are equal temperature and equal heat flux. The boundary condition

at the exposed surface x = 0 will be taken as (i) that of a constant

heat flux, or (ii) that of a constant surface temperature. The composite

body is initially at zero ten'erature.

Before proceeding with various approximate methods, exact analytical

solutions were first obtained for laminated composites with a finite

length in the principal heat flow direction. Instead of extending to

infinity along the x-direction in Figure II., the composite terminates

at x = L.

Two boundary conditions at x = L were used alternately in that

analytical study, namely (i) a perfect insulation and (ii) constant

temperature (equal to its initial value). Hence, all together four

analytical solutions expressed by infinite series were developed and

presented in Appendix C. 25
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The reasons for that effort are two-fold. First, exact solutions

for composite configurations of practical interest are sparse, and

secondly the availability of solutions for the geometry described

would establish a standard with which approximate methods can be

compared from the viewpoint of labor-vs.-accuracy trade-off. Even

though no numerical results have come forth from that effort, because

of the resulting complexity, they are presented in Appendix C for

completeness and possible future uses.

Turning now to the approximate methods of analysis, the geometry

depicted in Figure III.1 is taken up next. Conceptually, the temperature

variations in both regions are expected to be, at small times, very much

like those in a semi-infinite domain occupied by each constituent with

the other absent in the half-space. As an example, the temperature

responses for the case of a step-rise in their surface temperature at

x = 0 are given by:

T = erfc(x/2vrj7)

T2 = erfc(x/2,a2T)

for small times.

As time proceeds, inter-region heat transfer takes place which is

manifested by transverse temperature variations which result In a

significant deviation from the solutions just described.

The preceding description of how the teaperature varies qualitatively

can be replicated by adopting the concept that in each region the
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temperature distribution is comprised of two parts: a first part which

is dependent on the axial distance x aiid time 0 only, and a second part

which is a product of two functions, one dependent on (x, e) and the

other on (y, e).

Obviously at the interface y a (Figure If.1), these two regions

must have a common temperature Ti . Such a temperature picture is given

by the following:

T Z t + (t- tl)F(y, e) (y < a)

12= t2 + (ti - t2 (y, 0) (a < y < b)

where tl, t2 , ti are functions of (x, 0).

Two crucial roles are to be fulfilled by F(y, e) and 0(y, 0).

First, at the interface y = a, these two functions must assume a

value of unity so that TI = T2 = ti. Secondly, at time zero, both

functions must vanish. These two requirements produce a singularity

at 6 = 0 and y = a, and are therefore met by the following functional

form for F:

F(y, 6) = cosha1y/cosheia

where al is an implicit function of time e,suchthat the singular

behavior of a1 - - at e - 0 yields the desired characteristics of

F(y, 8) as discussed before. Of course, the fact that cosh Sly has a

zero slope at y = 0, the symmetry line, is a built-in feature.
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Similarly, the function *(y, e) is given the form:

¢(y, 8) = coshB2(y - b)/cosh82(a - b)

which has a zero slope at y = b, thus fulfilling the insulated condition

at y = b.

III. FUNCTIONAL REPRESENTATION OF THE TRANSVERSE TEMPERATURE VARIATION

Consider the following functions to denote the temperatures in

regions 1 and 2 respectively.

T= t+ -- r-(t2 " tlcosh~la (111-l)

T t + x t lcosh~la

for region l, and

T + ( cosha 2 (y - b)

T2 2  + x1-(t t2)CoshB2(a - b) (111-2)

for region 2.

The parameter X is defined by:

(k 2  B02 tanh 2 (b - a)

tanhla ( -3)

The second terms of Equations lll-I and 111-2 represent the interaction

of one region with another through conduction across tne interface y = a.

29
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If the second terms are zero, then t1 or t2 will be the temperature

distribution in each region when the other is absent. These temperature

distributions in such an extreme case are of course known from previous

work and can therefore be used in the construction of these one-

dimensional solutions t1 and t2.

In these equations, B1 and 82 are functions of time and.can be

thought of roughly as l/ vrla and I/ vc2e respectively, although not

precisely equal to them. Thus, when at small-time instants, 81 and 82

tend to infinity, the second terms of Equations III-1 and 111-2 have

a vanishingly small influence. In this way, the temperature responses

in regions 1 and 2 independent of the other are preserved.

The interface conditions at y = a are fulfilled by their

functional formations. These conditions are:

T1 = T2

kI (aT 1/ay) = k2 (3T2/3y)

and are satisfied by Equations 11-1, 11-2 and 111-3. Furthermore, the

insulated condition at y = a and y - b are also complied with.

In summary, it should be noted that t, and t2 are functions of

x and 0, and that T, and T2 give the spatial-time distributions of

temperature in these two regions. Undetermined, however, are the

time-parameters 81 and 82 as well as tI and t2 . It is the purpose of

the heat-balance integral-approach to obtain these variations.

30



111.2 THE HEAT-BALANCE EQUATIONS

By averaging the temperature in each region as given by

Equations III-1 and 111-2, there result:

a tanh 1 a"

dy fT Idy + (t2 - tl) (111-4)I= a"T 1 +-" A I~aa

0

b t t a n h ( b " a)

I a T2dy = t2 + 1tn (t I -t 2  ( (Ill-5)a

The equations which govern T, and T2 are obtained by averaging the

governing differential Equations 11-6 and !1-7. In carrying out the

process of averaging, the insulated (zero conduction) condition at y = 0

and y - b and the equal heat flux condition at y - a are utilized. The

governing equations after being averaged then become:

atli + tanh la 1 x tanh01a t+  2 - ti) + a I[t 2 + tl]

C a 2[t + -, t tanh 1a]

ax (t2

T [ 1  (t 2  tl)itanhila] (111-6)
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at 2  r tanh 2 (b - a)'tnBb a
+ (t1 " t2 ) 1 [ + X a (b -a) + 0 t 2(b - a) a tl "t2

a 2  1 tanh82 (b - a) 1
x2 t2 + (tl - t2) I-+--J 2(b - a)

+ {b [1 . (tI - t2) 2tanho2 (b - a) (III-7)

In the preceding equations, the second terms on the left-hand

sides denote the sensible heat as the temperature profiles in the

transverse direction (i.e., the y-direction) change with time. The

reason for this identification is that the second terms calculate

the time-change of 81 and 82 respectively. Thus, the three terms

on the left-hand sides can be interpreted as follows: the first

terms represent sensible heat change due to a bulk temperature change;

and the third terms represent the change, not of the profiles as do

the second terms, but of the bulk value (tI - t2 ).

On the right-hand sides of these equations, it is easy to

recognize that the first terms reoresent the net axial conduction and

the second terms, the transverse or interface conduction.

In laminated composites, the transverse dimension a or b is

usually much smaller than the axial dimension - the direction which

coincides with the principal heat flow path. Thus, a diffusion time

b2  2for the transverse direction is naturally b2/a, or b /a2 , which

3I
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characterizes the time scale the transverse temperature-change

takes place. There is, of course, a diffusion time for the

longitudinal direction indicated by z2/c/a1 or z
2/(2, which is indicative

of the time scale for heat propagation in that direction. In the

region where x >> b, the temperature change (with time) is much

slower in the x-direction than that in the transverse direction, due

to interface conduction across a much shorter distance. From this

dimensional argument, it is plausible to equate the second term on

the left hand side of Equation 111-6 with the second term on the

right-hand side of it. Of course, the same can be said of Equation

111-7. By such isolation from the overall equations, the "transverse-

balance" equations are now:

Pll [ tanhapl [ A 81 tanhala  (111-8)

pc [ tanh82 (b - a) k .b 2  1 a 82tanh82(b - a)
P2c2 a)

(111-9)

Because of Equation 111-3, which equates the interface heat conduction,

the right-hand sides of Equations 111-8 and 111-9 are equal (except

for the factors a and b - a). A few manipulations show that

Plthough 81 and 82 are both unknowns at this stage, they are related

by the following simple relation:
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(82/1) r/Q1 /a2  (1-

and Equation 111-3 for X can be re-cast as:

X = (k/ v A tanhWl {[(b/a) - llrac t2
2 1 k/ 

tanhl-

In both expressions:

81 . ala, and T2 =8 2a (111-12)

The above developments serve the purpose that only one of the two

equations involving $1 and 82 needs to be solved. Thus, Equation 111-8

will be sufficient to determine B 1 or Jl as a function of time e.

The pertinent boundary condition is at 8 - 0, l - which is required

in the temperature-profile Equations III-I and 111-2. For 31 -,

consistant with 8 2 - W, the second terms of Equations lll-I and 111-2

both vanish as they should, at 0 - 0.

111.3 THE TRANSVERSE HEAT-BALANCE-INTEGRAL EQUATIONS

Regrouping the pertinent equations into this section, and using

the following simplified notations:
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62 -02a (111-12)

- (alI/1a2)

the equation to be solved for T1 is,

with the boundary condition T 0, C o. The parameter X is

defined by:

S= k- )/kp(Ic-) tanh[T) (. 1]/tanhi

Defining a new symbol H such that:

tanhO1  (111-13)
-'+ x' "T1

equation 111-8 can be put as:

dH H-2 (111-14)
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with the boundary condition of 3 at 0 0. Appendix A shows

the numerical method developed to solve Equation 111-14 as well as

the asymptotic continuation at large values of 1.

For k./k1 = 10, cj2/a 1 = 3 and b/a = 2, the variation of 'N, with

is shown in Figure 111.2. At small values of 1, = '. Hence

for small times, the transverse temperature variation as shown in

Equation III-1 has the form of:

cosh~y = oshl(y/a) . cosh(y/a)/
cosha cosh l cosh(l/)R)

for the laminate in region 1, i.e., y < a. At a short distance from

the interface y = a, let y' = a - y, the transverse temperature

variation as given above can be expressed by the following (for

*B 'I ):

= e-$(a - y) = e- = e-(y'a)/AI"

which shows the correct combination of the similarity variable in heat

conduction theory.

36

.. . . .. .. . .. . l .. . .. . .. . I Il I l . . .I - h, " -- - - -... . . - - - -



10.0

8.0-

6.0

4.0-

2.0

1.0
0.8
0.6'

0.4 L

0.3 -o1 [..I I I I I I I ,

0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8

Figure 111.2. Variation cf Transverse Time-Parameter TI, vs T
(Laminated Composite). (From Equation 111-14,
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111.4 THE AXIAL HEAT DIFFUSION EQUATIONS

In order to solve Equations 111-6 and 111-7, which are the

results of averaging the diffusion equations along the transverse

direction over these two regions, the averaged Equations 111-6 and

111-7 can be expressed, with x = x/a, as:

S Z I -Hl +'R (72 -T

!1l~ jT2 -a
2r T k1 2 HB I T ~

\OL aW x2 - (k 2 (b/a- 1) 1 - H(l ) -(1-6

where H is defined by Equation 111-13. The definition for R in the

preceding equation is:

(PC)l
R = (c 1 (111-17)

(Pc)2 (ab- 1)

which amounts to the ratio of the thermal capacities in regions

I and 2.

In these two equations, the coefficients of the second terms on

the right-hand side are of course presumed known, as they have been

obtained from Equation 111-14. Here, the focus is on the average

temperatures 7'l and T2 which are the results of axial diffusion and

38
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transverse inter-region heat conduction. The merit of only having to

solve Equations 111-15 and 111-16, in contrast to solving the full

diffusion equations for these two regions, les in the fact that the

transverse coordinate y disappears from these two reduced equations

by virtue of the transverse time-dependent parameters TI and T2 .

This seemingly minor simplification of the equations results in

a very significant reduction in labor required to obtain the

temperature distributions. The key lies in a proper choice of the

profile functions for F(y, 8) and 0(y, 8) in these two regions.

Perturbation approaches. In order to address the various

solution techniques available, let the inter-region conduction

coefficient be expressed by the following:

-2

L 1 11(118
i - H1 + R)-

and Equations 111-15 and 111-16 are re-shaped to:

ID 2T
1- - -. + L(T2 - T) (Il1-19)

ax

Z- _ RL(T 2 - T1 ) (111-20)
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The inter-region conductance L has the following characteristics, as

deduced from asymptotic analyses (see Appendix A):

L a I/NY for 0

L w constant for '

Also of significance is the thermal capacity ratio R, defined by

Equation 111-17.

Conceptually then, the system of Equations 111-19 and 111-20

with proper boundary conditions at 7 = 0 can be solved by various

perturbation techniques (the use of the Laplace transforms does not

obviate the use of perturbation, as the transform parameter is not

simply obtained). Therefore, one approach is to express the solutions

T, and T2 in series with time*F as the perturbation parameter, and the

scheme is to determine the terms in these two series on a term-wise

basis. Thus by writing T1 and T 2 as:

T1 "Go(i, W) + 'AG1(, T) + 'G2 (7, T) + ..

0' "g(;  +)  Fegl(" ' e) + T9(7 1 ) ...

where the first term solutions, Go and go, are the infinite-region

solutions without inter-region conduction. This is true, of course,

for problems with initial temperature zero in both regions.
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A second perturbation approach is through the thermal capacity

ratio R. If R is very small, which in a limiting sense may be put

to zero, then Equation 111-20 can be solved immediately. In other

words, the temperature distribution T will be unaffected by T1 . Using
21

this solution of T2 , Equation 111-19 can be solved forT l , which is

used, in turn, to solve for T2 from Equation 111-18. Such a procedure

is equivalent to an iteration approach. Alternately of course, a

formal series expansion in terms of R can be used, such as:

Y= So(x,) + RS1( , 6) +

T2 = o(7,.) + Ri(7 T, ) +

Double Heat-Balance Integral-Method. Equations 111-19 and 111-20

are the results of using heat-balance integrals in the transverse

direction; they are considerably simpler than the full diffusion

equations. Under certain conditions, these two equations can be

approximately solved by using once more heat-balance integrals in

the axial direction. The resulting approximate solutions for the

two regions may be termed the double heat-balance integral-method.

To demonstrate its efficacy and deficiency, two types of surface

heating will be considered: constant surface temperature rise at

x a 0, and constant surface heat flux. For the former type of

boundary condition, the method of double heat-balance integrals shows
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a significant advantage, while for the latter type of boundary

condition, some limitation of the results must be observed.

Constant-Temperature Case. First, consider the problem of a

constant surface temperature rise. Let the surface temperature at

x = 0 of both regions be impulsively raised to a finite value from

their initial temperature of zero. If there is no inter-region

conductance, i.e., L = 0, then the solution for each region is

independent of the other and is given by the following for region 1:

T= erfc(_i/2\(r' (11-21)

For region 2, the solution is:

T2 = )  (111-22)

Essential to the method of heat-balance integral is a proper

choice of temperature profiles for these two regions when inter-

region conduction is to be accounted for. Accordingly then, the

error-functions are chosen to represent the temperature profiles.

But in liPu of , two time-dependent parameters y1 and Yz are

embedded in the preceding expressions; and the chosen profiles

are now:

42
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T erfc(7,-) (111-23)

T2 = erfc(y 2x)

in which the variations of 71 and 72 versus time T are to be

determined via the heat-balance integral method. At very small times

, Equations 111-23 and 111-24 must replicate the independent solutions,

Equations 111-21 and 111-22, as the inter-region conductance is

initially absent. This requirement establishes the necessary

boundary conditions on 71 and 72, i.e. for T 0:

2 Va-,7 2 / (2V') (111-24)

In fact, a more appropriate description is:

7 = 0 at 0 (111-25)

Y2
3= =at T 0 (111-26)

and their singular behaviors at e 0 are determined by the heat-

balance integrals.
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The next step is to integrate Equations 111-19 and 111-20 from

x 0 0 to x - with the temperature profiles T and T2 given by Equations

111-23 and 111-24. The result is two equations with I and T2 as the

new dependent variables.

" l +L(LL')(111-27)

d{ ) 2(1)2\72 - RL(L~ L) (111-28)

The associated boundary conditions are those prescribed by Equations

111-25 and 111-26. It is to be recalled that the time-dependent transverse

conductance, L, having been determined by virtue of solving Equation 111-13,

is a ore-determined function in Equations 111-27 and 111-28.

For starting the solution of these two equations, the initial

boundary conditions of Equations 111-25 and 111-26 can be satisfied

by taking:

1L +

Yl

1,S2*re +
L=
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The numerical coefficients s1 and s2 are immediately shown to be

s = 2 and s2 = 2ra/T which render the asymptotic solutions (for

IT 0) the same as the independent solutions. As time goes on, the

influence of the transverse conductance L starts to modify the

solutions. Implementation of the solution can proceed by a simple

integration method. Results obtained in this manner are discussed

in Section V in comparison with other solution techniques.

Constant Heat-Flux Case. In this case, the temperature profiles

in the two regions are guided by their respective independent solutions.

Thus, starting with the profiles:

T= [aQ/k 17l] ierfc(y'-) (III-29)

T2 = [aQ/k 2Y2] ierfc(T2x) (111-30)

where yl and Y2 are, as in the case of constant surface temperature,

the time-dependent parameters.

Integrating Equations 111-19 and 111-20 from V= 0 to i=

with T1 and T 2 as the profiles, the resulting equations become:

4(111-31)
9 Y 2 Y2' l
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d [1].) ) R( ) r' 2  - (111-32)

72 Y1

The preceding equations can be solved in a closed form for the

boundary conditions 1 ' 2* at W - 0:

Y2  01 L~'~

•2exp( (I + R)Lde)d-] (111-33)

which, when introduced into Equation 111-31 or 111-32, gives direct

solutions for Y2 or Yl" The surface temperature variations (with

time) for these two materials are given by:

Tl - [aQ/k Ir]/Tl (111-34)

T2 - [aQ/k 1v r] [k/k 2 ]/ 2  (111-35)

Numerical results obtained from the preceding equations are discussed

in Section V in conjunction with results obtained by other methods.
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To understand the nature of the double heat-balance integral

method, it is necessary to examine Equations 111-19 and 111-20, which

contain the inter-region conductance effect. The inter-region

conductance exhibited in these equations is of a local character,

i.e., at an axial location, x. When axial heat-balance integrals are

applied, the inter-region conductance is therefore summed up. Thus,

the local variation of L is thereby lost. This is a source of

inaccuracy in the final results. In an extreme case, the inter-

region heat conduction may reverse itself, i.e., from = 0 to x = xl

(T2 - Tl ) > 0 and from 71 to Y (T2 - T) < 0. The average

of the interfacial conduction may be quite influential on the final

results.

Finite-Difference Solution. The method of perturbation described

in Section 111.5.1 is theoretically exact and conceptually elegant.

From a practical point of view, the method is tedious, for it

requires a number of terms in order to achieve some degree of

accuracy. Similarly, the use of the Laplace transform - again

conceptually exact - does not render itself to immediate numerical

extraction, because the transform parameter does not have simple

roots. Consequently, the use of small-time expansion or large-time

expansion in the inversion procedure, which constitutes a de facto

perturbation process, negates the conceptual advantages the Laplace-

transform method possesses.
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On the other hand, the double heat-balance method presented in

Section 111.5.2 reduces the analytical labor to a minimum, but in so

doing the local (along the axial position) inter-region conductance

effect is averaged out or may be mutually cancelled. Only the total

inter-region transverse conduction is recognized, as is pointed out

previously in Section II.

Between these two approaches lies the method of solving the

axial diffusion EQuations 111-19 and 111-20 by a finite-difference

procedure, which in a broader sense belongs to the exact-solution

category. The advantage of solving the axial diffusion equations

over the full diffusion equations in two spatial coordinates is

readily apparent if it is recognized that the labor of the former

is about one-tenth of the latter. For this reason, the axial

diffusion Equations 111-19 and 111-20 as well as the corresponding

equations for fibrous corposites are used extensively in this report.

Appendix B contains a synopsis of the finite-difference

formulation, and the results therefrom are presented in Section V

together with those from other methods.
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IV. PARALLEL HEAT FLOW ALONG UNI-DIRECTIONAL FIBERS

Consider an idealized dispersion pattern of uni-directional

fibers* in a matrix material such that the fiber centers form an

equilateral triangular pattern as depicted in Figure IV.l, which

shows a cross-sectional view.of such a composite material. When

planar heat flow takes place along the fiber axial direction, it

is possible to visualize a repeating cell in which the thermal

response is representative of the entire body.

Such a unit cell is a hexagon with a fiber located in its

geometrical center as indicated in Figure IV.l. Intuitively, the

hexagonal enclosure of the fiber can be replaced by a circular

enclosure containing the same amount of the matrix material, and

the boundary condition on the circular enclosure is equivalent to

that on the hexagonal enclosure, i.e., an insulated condition.

Mathematically speaking, a great simplification has been

achieved; both boundaries are now expressed in circular coordinates

while preserving almost complete thermal equivalence. Hence, the

problem is transformed into two circular cylinders with the matrix

material enclosing the fiber as is now illustrated in Figure IV.2.

Here and elsewhere in this report, the terms fiber and tow are
used interchangeably.
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Figure IVAl. Triangular Dispersion Pattern of
Uni-directional Fibers in Matrix

so
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x

Equivalent Circle

Figure IV.2. Equivalent Two-cylinder Configuration
for a Uni-directional Fiber-composite
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To preserve parallelism with the case of laminated composites,

the radii are named a and b and the principal heat flow is along the

axial direction x. For illustrating the heat-balance integral

approach, consideration is given to the problem of a uniform initial

temperature (zero) and an impulsively applied heat flux Q on the

surface, x - 0. The material properties are k1 , Pl, c,'for the

fiber region and k,, P2, c2,for the matrix (annular) region.

With the simplified configuration shown in Figure IV.2, the

problem is the same as that treated in Section III except here a

circular configuration replaces the planar configuration in

Section III.

IV. FUNCTIONAL REPRESENTATION OF THE TRANSVERSE VARIATIONS

A mathematical function which reasonably reflects the spacial

distribution of the temperature must contain r-variation and

x-variation. Expressed in a product-form, the temperatures in regions

1 and 2 can be taken, similar to Equations III-1 and 111-2, as:

T1 1 18 (t1 - tl)tcoshlr 2  (IV-l)

S[cosh$ 2 (r
2  b2 ) 1

T2  t2 + (t t2) 2osh(a  b2)] (Ir-2)
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The radial variation (in space and in time) is expressed through

the terms in brackets. It is readily seen that the conditions of

zero temperature-gradient at r = 0 and r = b are fulfilled by the

form so chosen. Furthermore, at r = a, the interface, TI, is equal to

T2  as is required. The equal heat-flux conditions:

k1( 3TI / ar ) a = k2(3T2/r) a

result in an expression for Ti, the interface temperature, as:

t= (t + X t/(l + X) (IV-3)

and

k 2 1~a tanh 2 (b - a2
tanhb (IV-4)

which is parallel to that for the planar case, see Equation 111-3.

The profiles, Equations IV-] and IV-2, can be re-cast as:

+ t 
c ShO r 2

1 a]2 ) cosholaZ (IV-la)

Tl t + Ct t I cosh02(r (V-2a)T2 " 2  1 (t 2) 7_ LcoshB2 (aZ  b Z)1
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Temperature variations in x and e are embedded in t and t2 ,

whereas temperature variations in r and e are expressed through 8i

B2 , r, and X. The time-dependent parameters $, and 82 determine

the transverse profiles in both materials.

As in planar case, Section III, it is of importance to note

that the boundary conditions on 8, and 82 are that as 6 - 0, 8.1 and

82 approach infinity. The latter condition yields a singularity at

the interface r = a, while it renders the temperature in the transverse

direction uniform in their respective cross-sections.

IV.2 THE HEAT-BALANCE EQUATIONS

First, the temperature profile Equations IV-la and IV-2a are

averaged transversely in each region, resulting in:

tanh8la 2
'Tl = tl + (t 2 " t) + -- J (IV-5)

TI I (2 l [ X 81 a

1 tanh2(b
2 _ a2

2+ 1  2) [12+x2 ] (Iv-6)

Next, the governing heat diffusion equations are averaged in

the r-direction for each region. The resulting governing equations

are in the following form, similar to those in Section III:

54



(t L  tanh8la 2 ] + tanh 1a 2 ( t')e T 1 + B i +X 8la2 2

= -. + (t2 - ta) 2 2 (IV-7)

ax. )Jt + [ l 1  )tanh(2  a2)]- + (t2 t) --I + X11

t L 2

+ i tanhb2(b2  a a2

1 + X r2  a2  ( -
2(be - a2) Z

a2 f2 + t t 4 032 a2 tanhB2(b2- a 2) (IV-8)F' "+ (t1 - t2 ) + X ((b/a)2 2

where a 1 618/a2 and x = x/a.

IV.3 THE TRANSVERSE HEAT-BALANCE INTEGRAL EQUATIONS

As is explained In Section III, the interface conduction

represented by the second term on the right-hand side of Equation

IV-7 or IV-8 is associated with the time-rate change of the transverse
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temperature-profile represented by the second term on the left-hand

side of the equation. These two terms can be isolated from each

equation. Such a "transverse equilibrium" gives the following heat-

balance integrals:

d [A tanh81 a 2 a2tanh$ a2  (IV-9)

L dn( 4 Ba2 tanhB a2 ( (.t)

'L2 de 1 1 A 82aa

(Iv-lo)

Because of the definition of A in Equation IV-4, the right-hand side

terms of Equations IV-9 and IV-1O are proportional to each

other. This observation leads to a simple ratio for the time-parameters

$1 and 82 as:

2s (v-ll)

Consequently, the definition for the interface parameter x can be

written as:
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m ....... /k~ 1 tanh [I. .... _2 (b...).. /tan w1f (IV-12)

2

where 1= Ba

Thus, only one of the two Equations IV-9 and IV-10 needs to be

solved. The boundary condition of 1 is, as usual,

a1 " 00;  0

By defining a convenient quantity H as:

H [tanh-a1 1 /I (IV-13)

Equation IV-9 is reduced to:

dLH = 4Hl1 (IV-14)
d e

Its solution with boundary condition IV-13 gives both 'F and F2

variations with time. Appendix A details the solution method of

Equation IV-14.

Shown in Figure IV-3 is the distribution curve for a2/a= 3,

k /k - 10 and b/a - 2. For the same parametric values, the ~

curve for a two-dimensional equivalent case is also indicated for

comparison.
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IV.4 THE AXIAL DIFFUSION EQUATIONS

Re-expressinq Equations IV-7 and IV-8 in terms of and T

one has the following equations:

-T a2t" I  4Ha1I- aX- l - H(l + R)] -'2  T] (IV-15)

al aT2  a2T2 (kI/k 2 ) 4Hf l
2 g 3 2  [ 2 ((b/a) - 1] 2(IV-16)

where R, the thermal capacity ratio, is defined by

"I Cl
R . l (IV-17)

P2c2[(b/a)- 1]

In parallel with the developments for the planar case, let

4HO
L = 1- H(l + R) (IV-18)

and the axial diffusion equations can-be represented by the following,

which correspond to those in Section III:
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31T, L (2 T,(1V-20)

aT 2 { 2T2
- - , , L x - RL(T 2 - T, (Iv-2o

The inter-region conductance L has been pre-determined through the

fi-variation obtained from Equation IV-14. See Appendix A for details.

Because of the close parallel developments with the case of heat

flow along laminated composites, the solutions and the methods of

obtaining the solutions discussed in Section III are directly

applicable to the above equations for heat flow in fibrous composites.

In fact, Equations IV-19 and IV-20 are identical to Equations 111-19

and 111-20, with the only differences in the definitions of L and R

(See Equations 111-17 and IV-17 for R and Equations II1I.18 and

IV-18 for L). Numerical results obtained for composites with

uni-directional fibers are discussed in Section V.
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V. PERFORMANCE EVALUATION OF THE METHODS

In order to bring out the essential features of the methods

developed in this report as well as significant thermal characteristics

in composite bodies, a number of calculations were performed. For

simplicity of presentation and discussions only composites with

uni-directional cylindrical fibers were analyzed as conclusions and

observations deduced for this configuration are equally applicable to

laminated composites.

Principally, two sets of physical parameters were employed in

the demonstrative calculations presented in this section. They were

Specification (A) -

kI/k 2  5, aI1/a2 = 3.33, b/a = 2, R = 0.5, L= 0.75

Specification (B) -

kI/k 2 = 0.2, 01/02 a 0.2, b/a - 1.3, R a 1.45, L, = 10.5

In Specification (A), the fiber (material 1) Is taken to be more

conductive than the matrix, indicative of applications to carbon/epoxy

composites. The diffusivity ratio of a2/al - 0.3 is to allow for a
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temperature cross-over in the Interior of the composites in the case

of constant heat flux. In Specification (B), reflective of metal

matrix applications, the fiber conductivity is less than that of

the matrix material. In both sets of the specifications, the thermal

capacity ratio, R, is in the order of unity, i.e., the two media have

comparable thermal intertlas. The asymptotic values of the transverse

conductance L are noted to be L. - 0.75 and 10.5 respectively for

each material. It turns out through the following analysis that L.*

is a significant quantity in composite heat transfer analysis.

Analyses were chiefly focused on the case of constant surface

heat flux, as it affords a more severe test on the ability of the

analytical means, and more importantly it represents a practical

need in thermal protection technology.

V.1 THE ANALYTICAL METHODS

For each specification of the physical parameters, several methods

of analysis were employed in order to compare their results, and

thereby to assess their relative merits from the viewpoints of

accuracy and time-consumption. The methods of analysis range from

the most elementary approach to full exact solutions of the

complete diffusion equations, and consist of the following:

(i) Separate independent solutions which assume that the

fibers and the matrix material have no transverse

conduction. In this situation, each region behaves
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independently of the other, with the temperature responses

the same as that for a semi-infinite domain (x > 0) and given

by the following expressions:

T= erfc(x/2V ) (V-I)

T 2  erfc(x/2vTe) (V-2)

for the constant surface-temperature boundary condition, and

T= 2(Q/k) A)-7 ierfc(x/2 ART (V-3)

T2 = 2(Q/k 2 )v; i erfc(x/2'F) (V-4)

for the constant heat flux boundary condition.

(ii) Double heat-balance integral-method, which, as discussed

in Section III, treats the Inter-region transverse heat

conduction on an integrated basis. The axial variation of

the temperature is characterized by a single parameter y,

or Y2 in each material region. Variations of the

characteristic time-dependent parameters are determined

by integrating (with respect to e) Equations 111-27 and

111-28.

(iii) Semi-finite difference solution which is, in essence, a

finite-difference scheme for solving the axial diffusion
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Equations 111-19 and 111-20. Since the transverse

temperature variation is expressed through the time-

dependent parameter Wl , the use of a finite-difference

to account for the axial temperatur: triation leads to

the terminology: semi-finite-difference solution.

(iv) Exact solution or finite-difference solution of the

complete diffusion Equations I1-8 and 111-9, while it

is not the objective of the present investigation to analyze

heat conduction in composites by exact solutions, results

thus obtained serve as a reference by which other methods

can be judged. Because of time and storage requirements,

only a limited number of computations were made, as will

be noted later in this presentation.

V.2 TEMPERATURE DISTRIBUTIONS FOR SPECIFICATION (A)

For the parametric values in Specification (A), the transverse

time-dependent parameter l is first determined by the numerical method

outlined in Appendix A. Figure V.1 shows how W, varies with*, the

non-dimensional time. Also included in Figure V.1 is the transverse

conductance L, which reaches an asymptotical value of L, 0.75 at

large values of 8. In practice, however, the transverse conductance

remains virtually unchanged at L a 0.75 for W - 1 or larger. Physically,

it means that the transverse temperature profiles in the fiber and
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matrix regions have reached their equilibrium shapes, though their

magnitudes may still be changing owing to axial diffusion. The time

for such an event is characterized by 1 or the physical time

e = a2/ol, the time necessary to diffuse over a distance of the fiber

or tow radius of a.

As the boundary condition of constant surface heat flux (equal in

both regions) represents a more practical situation encountered, the

surface temperature-rise with time, as heating proceeds, is a

significant measure of the material capability to diffuse the heat

flux away from the surface. Figure V.2 shows the matrix surface and

fiber surface temperature variations according to different methods

of analysis.

First, Method (i), which assumes that each region responds

independently of its adjoint neighbor, produces the extremes of the

temperature-time curves. For the physical parameters specified, the

matrix surface has a faster-rising temperature than does the fiber

surface. Since any mutual conduction in the transverse direction

tends to bring these two temperature responses closer together, the

calculated temperature responses by Method (i) therefore constitute

an outer-limit envelope.

Conversely, the use of full diffusion equations, i.e., Method

(iv), produces the exact solutions to the problem, where the inter-

region conduction is exactly accounted for, constttutes an inner-

limit envelope. Between the inner limit and the outer envelope,

there exists a fairly wide latitude in which the results of the other
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two methods lie. Results based on the semi-finite-difference method,

i.e. Method (iii), are located quite closely to the exact-solution

results, whereas results based on the double heat-balance integral-

method, i.e. Method (tv), are closer to those from Method (i) than

other methods.

Proximity to the exact-solution results appears to lend

credence to Method (iii), i.e., the semi-finite-difference solution

of Equations 111-19 and 111-20, although further Improvements are

desirable and indeed possible through a better representation of

the transverse temperature distributions in both regions. In-

ability of Method (ii) to include transverse conduction effect is

attributable to its one-parameter (y1 or y2 ) representation of the

axial temperature profile, and to the fact that inter-region conduction

is only accounted for on an integrated basis. Along the axial

direction, cross-over of the temperature profiles, as will be

discussed next, indicates reversal of transverse heat conduction

from one direction to another. Thus, in summing up the local

transverse conduction distribution, mutual cancellation causes

significant errors in the final results of analysis.

To further examine the relative merits of the various methods

of analysis, the temperature variations along the axial direction are

shown in Figure V.3. Only the results from Methods (iii) and (iv)

are presented and the closeness between the results from Method (iii)

to those from the exact method gives another indication of the

usefulness of the semi-finite difference method. Figure V.3 also
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reveals as to why the double heat-balance integral-method fails to

yield reasonable results because of the cross-over of the temperature

profiles. For larger times, V = I and T= 2, the temperature profiles

from Method (iii) are compared with those from Method (i), i.e., the

no-interaction solutions in Figures V.4 and V.5. A significant

observation based on the data in these three figures is the location of

the cross-over point at (x/a) z 1.0; its precise position varies not

appreciably from the value of (x/a) = I in these figures. The near

constancy of the cross-over location is in consonance with the diffusion

of D = I or a diffusion distance of one fiber radius a. Hence in

problems involving constant surface heat flux, large temperature

disparity in two different media in thermal contact is expected to be

confined to a surface layer of no more than a few fiber or tow radii

deep. Temperature differentiation outside this layer is substantially

reduced by mutual transverse conduction. From a thermal stress viewpoint,

it is in this surface layer where high stress values would be found.

As a further confirmation of the semi-finite-difference approach,

the case of a step-rise in surface temperature is also investigated.

Figure V.6 contains a typical record of the calculated distributions

and those of the exact solutions. It becomes apparent that the semi-

finite-difference method gives excellent agreement with the exact

solutions. Comparing the results shown in Figure V.3 with those in

Figure V.6, it should be noted that the larger difference exists in

Figure V.3 than in Figure V.6. For the former, the boundary condition

is that of constant heat flux; for the latter it is that of a constant
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surface temperature. It becomes understandable if it is re-called

that the solution to a constant surface-heat boundary condition can be

synthesized to consist of an infinite number of small surface

temperature rises. In this fashion, the minute errors as shown in

Figure V.6 are accumulated to the error exhibited in Figure V.3.

V.3 TEMPERATURE DISTRIBUTIONS FOR SPECIFICATION (B)

The physical parameters in Specification (B) were selected with

metal matrixes in mind in which the fibers have lower conductivities

than the matrix materials. A thermal diffusivity ratio of 0.2 was

assumed so that cross-over of the axial temperature profiles for the

two media would occur for constant surface-heating boundary condition.

As a large number of composites in aero-space applications have a

volume ratio of 0.6, a diameter ratio of 1.3 was considered for (b/a)

which yields a volume ratio of 0.69. The preceding parameters result

in a heat capacity ratio of R - 1.45 which assures that the axial

temperature distributions are substantially modified from their

independent (no transverse conduction) solutions.

Shown in Figure V.7 are the variations of the transverse time-

parameter -1 and the transverse conductance L. The latter reaches an

asymptotic value of L. = 10.4, a value substantially higher than that

for Specification (A), but in a much shorter time. Consequently, the

surface temperature variations (with time) for the two materials show
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a much narrower spread as indicated by the data in Figure V.8 than those

based on Specification (A), wherein the asymptotic transverse conduc-

tance L. is only 0.75. Hence, it can be concluded that a governing

parameter is the transverse conductance L. A larger value of L

signifies effective transverse conductance which brings about equalization

of the temperature in the two regions in a much shorter distance from

the end where heating starts. Consistent with the arguments set forth

in the preceding are the temperature responses shown in Figure V.9

where the cross-over of the temperatures in the two regions takes place

near (x/a) : 0.5 to 0.6 for - = 0.4 and 1.0 respectively. Beyond

the cross-over point, the axial temperature distributions are nearly

parallel to each other with a much smaller differential between

those shown in Figures V.3 and V.4, for which a distinguishing feature

is a lower transverse conductance of L. = 0.75.

Examination of the formula which defines the asymptotic value of

the transverse conductance, L., indicates that the make-up parameter

is the fiber/matrix conductivity ratio modified by the volume ratio

of the two materials. As.a further indication of the significant

role of this ratio, the transverse temperature distributions across

the fiber and the matrix regions are shown in Fgiure V.10 based on

the data for Specification (B). The fiber has much less conduction

than the matrix (k1/k2 = 0.2), resulting in a wider temperature

variance in the fiber region than in the matrix region. At (4a) = 0,

i.e., on the heating surface, and for - 0.4, the fiber cross-section

has a very substantial temperature variation from the center to its
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edge. High Transverse conductance rapidly equalizes the two regions

at (x/a) > 0.4, even though relative variations in these two materials

still exist in the interior of the composite.

V.4 LARGE THERMAL CAPACITY RATIOS

As an additional exploration of relevant parameters in transient flow

in composites, several computer runs were made to decipher the effect of

the thermal capacity ratio R on the temperature distribution. A typical

record is illustrated in Figure V.11 for k=/k2 = 10. A thermal diffusivity

ratio (a 1/a2) of unity is taken. These parameters and others resulted in

a thermal capacity ratio of R a 14.5, which expresses the condition that

the fiber has a much larger thermal inertia characterized by the product

of (pc) and the fiber-volume than that of the matrix region. The fact

that ai/a2 ' 1 precludes a temperature cross-over, as is evident in

preceding combinations. The temperature distribution curves for

- 0.4 andF - 1 show a practical merge of the temperatures in the

two different media at (x/a) = 1, which would become the cross-over

point if a1 < a2.

As a reference for discussion, the fiber temperature distribution

for F - 0.4 by Method (I) is also included In Figure V.11. This

reference distribution is of course based on the condition that the

fiber-region temperature is independent of that in the matrix region.

The corresponding temperaturs distribution for the matrix region Is not

present in Figure V.11, for it would be situated above the scope of the
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ordinate. The influence of the thermal capacity R is accordingly

apparent: because of a mutual thermal interaction by virtue of transverse

conduction,the fiber temperature is raised and the matrix temperature

is lowered from their respective reference distribution curves for

zero transverse condition. The deviation from the reference curve

is of course more for the matrix region than for the fiber region,

but not in exact proportion to the value R. Axial diffusion modifies,

to some extent, the transverse shifts of the temperature distribution

curves.
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VI. CONCLUSIONS

The analyses presented in this report consider the transient

heat flow along uni-directional fibers of composites or in the stacking

plane of laminated composites. Because of the preponderance of

physical and geometrical parameters involved, exact solutions by

analytical means are usually not feasible, except for special cases

of very much simplified geometries. Furthermore, sorting through

a large number of exact numerical solutions in order to extract

important parametric groups is prohibitively difficult.

Here in this report, a method has been developed which

identifies the parametric combinations and is relatively amenable

to numerical solutions. The method has two components: (1) the

transverse (to fibers or laminations) temperature profiles are

treated by means of two transverse time-dependent parameters which

are solutions to heat-balance differential equations, one for each

region. (2) The resulting equations for the axial temperature

variations in the two materials are much simplified, and their

numerical solutions are greatly simpler to implement than the full

diffusion equations. The axial diffusion equations contain the

governing parametrical groups which are identified to play

important roles in the temperature responses to a heat flux at an

exposed surface. They are (I) a transverse conductance parameter and

(i) the thew.m capacity ratio of the two different materials
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comprising a composite. The first governs, for the case of constant

surface heating, the extent of a depth near the heating surface wherein

a large temperature differential eAists between the two materials. The

second parameter influences the relative temperature modifications from

their respective reference values, the latter being those based on the

idealized one-domain no-interaction solution for each region separately.
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APPENDIX A

NUMERICAL SOLUTION OF THE TRANSVERSE
HEAT-BALANCE-INTEGRAL EQUATION
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APPENDIX A. NUMERICAL SOLUTION OF THE TRANSVERSE
HEAT-BALANCE-INTEGRAL EQUATION.

In the transverse direction, thermal diffusion time - time

required to even out the transverse temperature variations in the two

different media in contact - is much smaller than thermal diffusion

time in the axial direction. This is due primarily to a difference in

the dimensions along these directions in a composite material with

thin laminations or fibers of micro-dimensions compared to the length.

The transverse heat flow can therefore be treated independently of the

overall heat conduction process and this is accomplished by a heat-

balance integral method as outlined in Sections II and III for two-

dimensional heat flow (laminated composites) and uni-directional

fibrous-composites.

The resulting Equations 11I-8 and IV-9 are grouped together as:

dF tanho
d nX T1 t anh-I (A-l)
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where the factors n and r assume the following values:

n = 4, r - 2 for axis-symmetrical heat flow.

n - 1, r 1 for two-dimensional heat flow.

The boundary condition on 1 is - , as ' 0.

As 0 - 0, 81 , the parameter X assumes the following value:

A A0 /(k2P 2c2)/KlPlcl) (A-3)

Equation A-1 is reduced, for small vaues of , to:

d (,1 (A-4)

for which the solution is clearly:

l __(A-5)

For large values of F, the asymptotic solution A-5 breaks down
and the full Equation A-1 must be used to obtain the solution. To do

this, the equation is cast in the form:
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(1 + X) d + ahl

Ii----
nA01 tanh 1  L0

Or, in terms of the parameter H defined in Section III, the above

equation is put as:

d6 - Vd(H) (A-6)

The parameters V and H are reproduced here for clarity:

l+x

- = +(A-7)
nZltanh-l

H tanh(AH + (A-8)

By assigning a series of values to 81 , starting from a large

value and down to, say, 1 - 0.1, a curve in the H-V plane is obtained.

From Equation A-6, it is clear that T represents the area

underneath the H-V curve as sketched in Figure A.l.

I As1 0, H and x approach their limits as follows:

A - ) - (p2 c2/plCl)[(b/a)r - I] • /R (A-9)

H H 1X. * a/(l + X.)
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Figure A.l. Graphic Illustration of Integrating
Equation A-i.

90



Hence for very large values of 1, the numerical procedure is

inherently inaccurate as H - H. and V increases without limit. For

this range, i.e., -l 0 0, the parameters H and V are expressed in

their asymptotic forms as:

H aT - 1 (A-1l)

where s = 1 + (k1/k2)((b/a)r - 1)1/3[1 + 1/)].

Substitution of these asymptotic forms into Equation A-6 yields:

1 g, exp [- (n/s)T ] (A-12)

The constant of integration g, can be determined by fitting the above

equation to the last point of ~ - curve obtained from the numerical

procedure.
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APPENDIX B. FINITE-DIFFERENCE SOLUTION OF THE AXIAL
HEAT DIFFUSION EQUATIONS.

With temperature variations in the transverse direction

approximated by two form functions with two transverse time-parameters

and ,2' the reduced heat conduction equations in the axial direction

are those of Equations 111-19 and 111-20 for the two-dimensional case

(laminated composites) and Equations IV-19 and IV-20 for the axis-

symmetrical case"(fibrous composites). These two sets of equations

can be jointly represented by the following:

aT2_ ax 0%

2-1

The interaction parameter L denotes the inter-region heat conduction

effects based on their respective average temperatures over each

cross-section and is defined by:

2nH'' (8-3)
L"1-Hi1 + R)

9S
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The thermal capacity ratio R is defined by:

R a (Plcl/p 2c2 )/[(b/a)j - 1] (8-4)

Equation B-3 for L and Equation B-4 for R cover the two cases through

the coefficients n and j in these two equations. They have the

following numerical values:

() For two-dimensional heat flow (laminated composites)

n=l, jl

(ii) For axis-symetrical heat flow (fiber-composites)

n a 4, j i 2

ASYMPTOTIC ANALYSIS FOR SMALL TIMES, 0

It is of interest to note that at very small times, the transverse

conduction parameter exhibits a singularity for an impulsive type of

thermal loading, either an impulsive temperature rise or an impulsive

heat flux at x a 0. The analysis in Appendix A shows that6 - I / i ,

which is consistant with more rigorous theoretical results. As the

intermediate parameters, H and X, are defined by:
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H ~~ (tanh.l 1/0,(85

k~~2 tanh1  (-6
" 1 PC21  tanhl " (8-6)

the small-time variation of L can be determined as follows:

where A a (k2p2c)/(klplc,) (k2/k) raT/"2. Hence, the intermediate

parameter H becomes:

H .,.JOI (I + x)f7

and the inter-region conduction parameter L is of the form:

L " 1 f) (B-7)

ASYMPTOTIC ANALYSIS FOR LARGE TIMES, 6.

As the inter-region conduction proceeds, the Interaction parameter

L reaches a "steady-state" value, while the temperature profile in each
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region establishes itself in a steady-state pattern in the transverse

direction. Under this condition, e ~~ ~ 0, and the intermediate

parameters H and X are analyzed below:

which is obtained in Appendix A [Equation A-121, where:

s - {1 + (k I/k 2 )[(b/a)l - 1]1/3[1 + R] (B-9)

Other relevant parameters can be expressed as:

* X{l - [ a (.)J )2-1 + ..}(B-10)

LH- L I- so + . 1(B-12)

-m (1/R) = P2c2/Plcl]((b/a)3 - 11 (B-13)

H* 1/(l + R) (B-14)

Lao 3n/ (I + (k I/k 2) (b/a)J 1)1 (B-i5)
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The last quantity L,, is of particular interest, for it represents the

"steady-state" inter-region conductance, which was analyzed by Maewal,

Gurtman and Hegemeir (J. of Heat Transfer, vol. 100, p.128, Feb. 1978).

In their analysis, the variation of L at small T-values was not taken

into account for a first-order estimate. Figure B-1 illustrates the

variation of L as a function of time 6 for a combination of k2/k1 = 10,

2 /a, = 3 and b/a = 2 and for the axis-symmetrical case (fibrous

composites).

FINITE-DIFFERENCE EQUATIONS

Let the 7-axis be divided into a number of equi-distant nodes;

starting from i = 0, these nodes are numbered by an index j = 1, 2,

3,..... The distance between two adjacent nodes is tfX and the time

advance is represented by AF. A three-point explicit marching (in

time) scheme is used, with the following diagram illustrating a

three-point cluster of nodes (j - 1), j, and (j + 1):

Tj-l T1,j T1l j+l

J-i j j+l
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Equation B-I is reduced to:

Fj T, 1, + T1, j-1 - 2TI li]

+ L '72. - T,3] (B-16)

where the unprimed quantities are current values and the primed

quantity Tl, j is the future temperature. Casting B-16 as:

-T (A1" [ I  + f ], ~ + TI  [1 -- A LCO'
7.7 (A - -

(AX) ,jl 1.jl+(A)

+ LA6 T2 ,J ] (B-17)

A similar procedure on Equation B-2 yields:

-1 ' 2 [-2 +T -
T2,j ( T2  j+l 2, J-1

+ T2,j[11 - (2& 0'1L\_ RL] + RLT[T1J] (B-18)

Stability of the explicit marching scheme is assured by chosing AT

such that the coefficients of T1,l and T2 ,J on the right-hand sides of

B-17 and B-18 remain positive.
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APPENDIX C. EXACT SOLUTIONS FOR LAMINATED COMPOSITES
OF FINITE LENGTH

C-I. DEVELOPMENT OF SOLUTIONS

Consider the configuration depicted in Figure C.1 which shows a

repeating section of a laminated composite stacked by alternate

layers of two different materials 1, and 2. The extent in the x-

direction is finite.

At x = L, where heating occurs, two boundary conditions are

considered: one is for an impulsive temperature rise from an initial

temperature distribution - taken to be zero; the other is for an

impulsive heat input - equal in both regions. These two boundary

conditions are the basic ingredients with which solutions of more

practical interest can be built by a superposition principle.

Designating these two boundary conditions as the T-case and Q-case

respectively, these can be expressed by:

T-case T1 a 1, T2 - 1, at X - L (C-l)

Q-case klxaTI/X-k2xaT2/3X - Q, at X - L (C-2)
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At the other end x - 0, two types of boundary conditions are considered;

they are:

(1) T I T 2 *0 at x = 0 (Fixed'Temperature) (C-3a)

(ii) aT I/ax *aT 2/ax a 0 at x - 0 (Insulated) (C-3b)

The initial condition is of course a uniform (taken to be zero)

temperature distribution. At different y-positions, the following

conditions apply:.

3T I/ay - 3T 2/ay Z 0 at y 0, and y= b (C-4)

T1 T 2 and k ly T I/ay =k2yaT 2/ay at y - a (C-5)

All told therefore, four cases are treated in this report; they

are:

Case (1: Tl(y,L,6) = 1, T 2(y,L.e) - 1 (C-6a)

aT1 (y,0,e)/ax -0, aT2(y,O,e)/ax *0 (C-6b)

Case (2): T1(yL~e) - 1, T2(yL,8) - (C-7a)

T I(y,0,e) a 0, T 2(y.0.6) - 0 (C-7b)
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Case (3): klx[aTl(y,e)/ax] u Q. k2xl3T2(ye)/ax] - Q (C-8a)

aTl(y,O,e)/ax , 0, aT2 (yOe)/ax - 0 (C-8b)

Case (4): klxaTl(y.Le)/ax] " Q, k2x[aT2(y,L,e)/3x] Q Q (C-ga)

TI(Y,O,e) * 0, T2(y,O,e) - 0 (C-gb)

All these cases are subjected to the interface boundary conditions

specified by Equations C-4 and C-5 plus the initial conditions of:

TI(Y,x,O) - Tz(yx,O) = 0 (C-10)

Before proceding with the individual cases, the governing

differential equations are first non-dimensionalized. Let the

characteristic length be L and the characteristic time be (L2/mix).

the following definitions and variable transformations are obtained:

Ox k2k / x/LJ(-ll lx/(PC)1' 02.x •  2x/(PC)2' • y/, =xL

(C-11)

1 a (kl/klx), x2 a (k2 /k2x)

2- (alxe/L), a U alL, F a b/L

The non-dimensional equations governing the temperature distributions

TV and T2 for these two regions are:
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(a2TIIBZ2) + X I (a2TI/a-2) - (aT1/8-) (C-12)

(a2T2/ax
2) + ',2 (a

2T2/Y'
2 ) = (Mi/0 2 )(T2/a-) (C-13)

CASE (1). Constant Temperature Rise at One End and
Insulated Surface at the Other

The complete solutions for T1 and T2 can be immediately written as:

TI . + Emj e 8'J[c o s Crmx/ 2 )-"C7) (C-14)
J=1,2.. m=,3,5..

T2 a I + E E Em • ;J (cos(m /2)]T 2 (C-15)J=,,2,.. m=l,3,5..

where the appearance of cos(mri/2) with m as any odd integer is

necessitated by Equations C-6a and C-6b at Z - I and 7 z 0 respectively.

Direct substitutions of Equations C-14 and C-iS into Equations

C-12 and C-13 give the following which govern T1 and V2.

x,, + [02 ( /2) 21f a 0 (C-16)
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X - (mv/2)eIV2 a 0 (C-17)

Equations C-16 and C-17 are subjected to the boundary conditions

(dYl/dy) - 0 at T= 0, (dT2 /dy) a 0 at 7 a F. Furthermore, because

of the forms of Equations C-14 and C-15 and the equal heat flux

requirement, two additional boundary conditions appear:

T,(a) -a 2 () (C-18)

klY;,(a) = k2 7 2 (a) (C-19)

The fact that there are two homogeneous differential equations to

comply with four homogeneous boundary conditions results in an

eigen-value problem for 0. Specifically, one first solves for

] and Y2 from Equations (C-16) and (C-17) giving the following.

cos ( .( 22 / c2a
2 iiAU (C-20a)"I. mj 2 - 2

cosaV~ (mir/2) ]/A1

Cos (Y - I c 1 i 2B (mir/2) 2 /

(nnr2)2 1Ax

The forms of Equations C-20a and C-20b have been adjusted to comply

with all boundary conditions at various y's, except at the interface
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y - I which supplies the eigen-value equation for 0 mj" Performing

the operation indicated in Equation C-5 gives rise to:

2. 2 - [ 2 j (/2
j- (=/2) ]/Xl tan;a - ( m2fl/I1

+ (k2y/k ly(((l/a 2 )al. (mv/2) 2 ]/A2 tan(F - T) [(al/a 2 )B - ( /2) 2]/X2 = 0

(C-21)

Equation C-21 determines, for each odd nteger of m, a series of mJ-

values, with the running indexes j a 1, 2, 3, ... to denote successive

roots. The eigen-value Equation C-21 is discussed in Section C-IV.

For each eigen-value a thus obtained, an eigen function T is

therefore defined for the entire domain from - 0 to - b. The

function 7 is, however, defined by two sub-region functions T

for 0 - 0 to i, given by Equation C-19, and V2 ,m'jI for y - ito b,

given by Equation C-20. The elgen-functions V and Yml(i 0 j) are

orthogonal to each other in the entire domain with respect to a

weight function wf as follows:

S0 toi wf .

(C-22)

-u toi wf - (PC)2/(Pc)
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The development of the preceding steps is contained in Section C-11 and

parallels with the original derivation by Title and Johnson (ASME

paper No. 65-WA/HT-52).

To determine the coefficients Emj, Equations C-14 and C-15

are combined to read:

2-

T = 1 + E E Eme cos(mynr/2)ymj (C-23)
j-l,2,.. m=1,3,5,.. mJ

At 0 = , the initial temperature distribution is zero everywhere.

Setting T to zero on the left and T to zero on the right, Equation

C-23 is multiplied by [cos(n7i/2)Tniwf] and is integrated from 7 = 0

to y -b and from7 = 0 to 7 = 1. The resulting expression for Emi

turns out to be (see Section C-III for details):

m-1

Emj -(8/Mr)(-l) ft/(fa + ft )]  (C-24)
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CASE (2). Constant Temperature Rise at One End and Initial

Temperature maintained at the Other End

The solutions in regions (1) and (2) can be shown as follows:

2-

Ti 7 + F .~je i sn (nvij) 1  (C-25)

n-i1,2,3,.. J-1.2,..

2 2-

F .e 8 8 (C-27)

~I,nj 2oVJ[8. ( 2 1/1 (-7
cos!V [82j - 0n70 ]/X

for- 0 to , and

-Fn 
_ ~'" 2n (nwr)21/A2

COS(7 - 6J xla n 2 (C-28)

for y * to IF.
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Equality of the interface temperatures at y = a is assured by the

forms of Equations C-27 and C-28 and that the same coefficient Fnj

appears in Equations C-25 and C-26. The condition of equal heat flux

on both sides of the interface yields an eigen-equation for SO

. 2 2 2n/Bj -(ni )2 l/X tana4 [Bni (nff)2]/A

+ (k2/kly)4 (cit/'32 )Sj - (nf)2 ]/X2 tan(F - -2j - (nn)2]/X2 = 0

(n = 1, 2, 3, ...) (C-29)

Equation C-29 serves to determine, for each integer n, a series of

8nJ-values for j = 1, 2, 3, ... to denote the successive roots.

The coefficients Fnj are given, following the same procedure as

for E m, by:

F nJ (4/ni,)(-l)n[ft/(fa + ft) ]  (C-30)

where fa and ft are given by Equations C-59 and C-60, in which m is

replaced by n( - 1, 2, 3, ... ) and p - "2, instead of P = (7/2)2

shown after Equation C-60.
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CASE (3). Constant Heat Input at One End and
Insulated at the Other

The problem of a constant heat input at one surface while the

other is perfectly insulated, is of fundamental importance in assessing

different rates of the surface temperature rises in the two different

regions. Additionaly, the rates of heat propagation are inter-mingled

with transverse conduction between the two regions. To analyze the

temperature response, an equivalent thermal capacity (pc)e is defined

on a prorata basis as:

(Pc)e = [(pc)la + (Pc)2(b - a)I/b (C-31)

which can be expressed in terms of the non-dimensional quantities as:

(PC)e = (Pc)l a + (Pc)2(E - a)]/g (C-31a)

Partial Solutions. Without regard to the Interfacial heat

conduction, a "steady-state" temperature response for both regions

can be envisioned: the temperatures will be linearly (in time)

increasing. Writing the partial solutions as:

I15
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TI = [Q/(2klx)1[2/Li + EQB/(pC)eL] + 71 (C-32a)

T2 - [Q/(2k2x)][2/L] + [QO/(Pc)eL] + Y2 (C-32b)

The first terms of the preceding equations are to comply with the

constant heat flux Q at X = L, and the second terms indicate that

both regions show a linear temperature rise (equal in both regions)

in time as a consequence of the heat input.

The functions Yl and Y2 are to satisfy their respective governing

equations. Thus, by direct substitutions into Equations C-12 and

C-13, the forms of Y, and Y2 can be determined, and Equations C-32a

and C-33b can be re-cast as:

TI - (x2/2) + [(pc)l/(Pc)e]9 + ((PC)l/(PC) e - 1](y-/2)/X (C-33a)

-2
T2 = (klx/k2x)(x /2) + [(PC)l/(PC)e]'

+(klx/k 2x)[(PC) 2/(Pc) e - 1](y - b)2/2]/X (C-33b)

where T1 - (k1xT1/QL) and T2 - (klxT2/QL). (C-34)

To each of Equations C-33a and C-33b, a constant term and a general

solution of the Laplace equation can be added. The potential solutions

from their respective Laplace equations are:
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cos(nixr-) cosh(nir/vA' )

and cos(nwri) cosh[nff( -'- S)/v2] respectively.

The expanded versions of the partial solutions then assume the forms:

y, 1 -2 1 +1 (pc) 1 -

Th (x ) ~~[(77 11 C'2  2 ]

+ 51n cos(n1')(cosh(ny/A,)/cosh(n1a/v'T)] (C-35a)
n-1,2,3,..

T2 (klx/k2x) (i" -> + T - -

2x 1 (Pc)2  )22

n=,,,.cosh(nir(iy -F)I2

The coefficients Gln and Gzn are connected by the condition of equal heat

flux at the interface y a a through the relation:

Gin (k2y/k)ly [tan(nw(i - b)/V)/tan(ni/' W]G2n (C-36)

117

LI



Next, the requirement of equal temperature at i j "S imposed.

Setting T - i in Equations C-35a and C-35b, and T1 T r2 , there
results:

(1/2)[1 -(kIx/k2x)][x- - 1/3] + nl,2,.(Gln - G2n)cos(nirx) = 0

(C-37)

Through a regular Fourier series technique, the coefficients are

obtained as follows:

G2n - 211 - (kly/k 2y)](-)n (C-38)

n 2  - (k/k) tan(nw(i - b6/ 2

L2 1 kly2y tan(ni./ -'- ) j

The partial solutions representing the steady-state behaviors are

now defined by Equations C-35a, C-35b, C-36 and C-38

Transient Part. Since the initial conditions of T, T2 " 0

are yet unfulfilled, transient solutions of the following forms are

needed:

2

niTH e cos (nx)Tl (C-39b)
n0,1,2,.. j=1,2,.. nj ,nj
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where,

COSY [0 2 . (nw) 21
Y'lnj osa j I (C-40a)

and

_2,nj cos("- ) [(cl/a 2) j - (nw)2]/X,0Y 2,nj Ia cL)a (C-40b)

cos( - b)((al/ 2)B nj - (nIT)2 ]/2

Again, the forms of Equations C-39 and C-40 assure equality of

temperatures T and T2 at 7 = -. The requirement of equal heat

flux results in the following eigen-value equation for BnJ (j = 1,2,..)

for each n-value:

[Bj- (nr)2]/),I tan-a[Bni- (nir)2]/)LI

2 2 2 2
-(n2i .J (nta)na/X2 tan( --) [j - (nr) ,

(k2y/kly) 4 [((l/cL2)Bnj -I = 0

(C-4T)

for n a 0,1,2, ... Note that Equation C-41 is identical to

Equation C-29. t
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The complete solutions for these two regions are therefore:

T" -Equation C-35a + Equation C-39a (C-42a)

T2 a Equation'C-35b + Equation C-39b (C-42b)

together with Equations C-36, C-38, C-40a, C-40b and Equation C-41

as auxiliary equations defining the various parameters. The coefficients

Hnj are evaluated in Section C-III.

CASE (4). Constant Heat Flux at One End and Initial
Temperature Maintained at the Other End

The temperature distributions in the two regions are expressed by:

= n + 35. sin(m-x/2)(cosh(my/2A.-)/cosh(w/2'X.)]

2 -
c Sm e"' sn(nX2)Ylm (C-43a)

m-l,3,5,., j=1,2,.. -
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T2 X" /2x)7"

+ B gmsin(m17r/2)[cosh(mw(y - F)/2vA2)/cosh(mw(i - 62A-2 ]

2

S e "i (C-43b)
m1,3,5,.. J-1,2,..

The eigen-functions Y 1,m and Y2 ,mj are as follows:

o [°sy [a . _ (m/) 2 ' 1/ 1 /cos ( 2 - (mr/2)2 ]/X 1 ] (C-44a)

Y2-mj" Top/Bottom (C-44b)

2

where Top- cosG7 - B [(al /a2) Smj - (mw/2 )2 I/X2

and Bottom *Cos(! - -) J(Ct1 /a 2) 0; - (=m/2 )2 J/A2

The elgen-values are defined by the roots of Equation C-21.

In equations C-43a and C-43b, the coefficients Am and Bm are obtained

by temperature and heat flux equalities at u j. Heat flux equality

yields:
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Am- -8 (k2 A/ky)T 2 [tanh(mw(F - -)/2A-)/tanh(mwra/2v, ] (C-45)

By setting TI(y- T) - T2 (7 - T), there ensues from Equations C-43a

and C-43b (for x - 0 to 1),

- (kx/k2 x)] * (Bm - Am)sin(mlni/2) (C-46)m-1,3,5,..

Since x has a Fourier expansion of,

rn-1
ao I 18/(row) 2] (.1)Ts n (m,,/2)

hence,

Bm -Am (1 )~~ [ I [I ] (C-47)

Equations C-45 and C-47 therefore are used to obtain Am and SM as

follows:

ta()mw(b .

(C-48)
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Equations C-45 and C-48 therefore fix the coefficients Am and BM. The

double Fourier coefficients S 1 in Equations C-43a and C-43b are

derived in Section C-II.

C-II. SEGMENTAL ORTHOGONALITY OF Yn

The function n is defined by the following expressions and is

governed by two differential equations in two sub-regions.

cos;7 [ j- 2 / ,

j mj s pm2 /Al (c-49)
cosam4 7 2 - pm2]/1

from 7 0 to T, and

cos(7 - )] [((%lla2) j- Pm2]/X2
n m 2.mJ C 2- 50)

cos(i - F) ( t2)8m -)2 2

from 7 T j to U. In both expressions, p is simply a parameter.

Thus, to bring about Equations C-20a and C-20b, p is set to w2/4.

In what follows, m does not need to be an integer.

Equations C-49 and C-50 are solutions to their respective

differential equations given on the next page.
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2 2A~. m [~j- Pm] .I T o m (for 0 to (c-s1)

)z2 2,,j ((l/aZ)B~2 - , 0 (for i to F) (C-52)

Multiply Equation C-51 by 71,mi and integrate both sides from V = 0

to i. Similarly, multiply Equation C-52 by (k2x/klx)72,ml and

integrate both sides from i = " to g'. The results are (re-calling

Smj( ')  72,mj (a 1):

(a)- x1 f Ymjj,midY-- (Bj- Pm2 ]f l myl'miyd (C-53)
0 0

-A2 (kzxlklx)Y2,mJ(1) - X2(k 2x/klx)f ,,mjd midV
a

in[(,l/a)(k~x/klxmi2 (k x/klx)pin2]f *,~V 2 ,dV (C-54)
a

In obtaining the above expressions, the fact that Y, (0) - 0, and

Yimi(b) - 0 has been taken into account. Furthermore, it can be

shown that:

'1,mj (a) 8'x 2 4 1
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Is identical to the elgen-equation of heat flux equality at the

interface, - a. By adding Equations C-53 and C-54, there results:

.lmi l'mi V+ f [(pc)2 / (pc)l]V2,j dmid1
aI

=PM2 [ V1,mjV1,mld7+ (k2x/klx) - fy2,mjy2,midy

a

- X1 f lf ,mjV ,midY - X2(k2x/klx)f Y ,mY ,midV"  (C-55)

0 a

By interchanging the indexes i and J, there ensues another equation

which has the right-hand-side identical to that of Equation C-55. On

the left-hand-side, however, the only difference is %1i2 instead of
2. Since these two elgen-values are distinct, hence it follows:

f .,Mj,,,idy- + f(,PC) 2/(PC) 1  
7 ,,,V2.midy ' 0 (C-56)

0 a

Thus, the segmental orthogonality of YIm's is established with respect

to the segmental weight function defined by Equation C-22.
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C.III. THE COEFFICIENTS Ej IN EQUATIONS C-14 AND C-15

Combining Equations C-14 and C-15 into a single equation,

these results:

T2l F. E mie 8 o~vx m (C-57)J-1,2,.. m-1,3,5,..

where Y m1 are those defined by Equations C-20a and C-20b in their

respective regions. In order to satisfy the initial condition of

T a 0 at 0 0, Equation C-57 becomes:

J81,2,.. m=1,3,5,.. mio m-

multiplying both sides by cos(mr/2)Ymiwf and integrate the resulting

products on both sides from Z = 0 to 1 and y * 0 to b, the result is:

n-i
ni. - 7 (., )'. I f nidY .f , dy

In the procedure above, the orthogonality relations of:

f cos(mii/2)cos(nTF/2)d7m 0

0
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for m 0 n, and

0

for i 0 j have been incorporated. The complete expression for E is

therefore:

rn-1
i= -(8/mir)(-l) 2 Eft/( + f 1(C-58)

with

ft tani [82 7-- (p2) ]/xJ/jjmT [82 2 - /

+ (C 2/c (C)I anE- Pm2 IX/4(/)$82 - 21X

(C- 59)

and,

21frnr1/ 2

+ [(PC)2/ (PC) I(F- ICos W -3 ij(al /'ad.~ - 2 .

(C-60)
2where p *(w/2)
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C.IV. ANALYSIS OF EIGEN-VALUE 8 ni AND snj

The elgen-value Equation C-21 applies to Case 1 and Case 4,

and the eigen-value Equation C-29 applies to Case 2 and Case 3. These

two Equations C-21 and C-29 can be lumped together as:

(82 - /X2 t - (cl/02)Bij - ]/X2 =0

(C-61)

For I - 1,3,5, ..., then the above equation reverts to Equation C-21;

for i - 0,2,4,6, ..., the above equation reverts to Equation C-29.

For all four cases, the eigen-values ai8j(J = 1.2, ...) are, of course,

all positive and real.

In order to facilitate a unified numerical procedure in obtaining

the roots ai, two separate cases are considered: (i) (ai/o&2) > 1

and (ii) (ai/ 2) < 1.

(I) (Li /Y) > 1: Let -(ai/a2),
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together with the following substitutions:

= (k 2y/k1y)

(Fiji) = (2/1Tf)o8 .a

91= X 1

g2 WX 2

then Equation C-61 becomes:

4 (~~) -(ia) 2]ig, tan (i1l [(*j)2 - )2]/ 91)

(W~a iji - (gZ) 2]/g, tan ji2424[(,aClji)2 - ii)2]/g2)
(C-62)

(ii (c1/c2) 1: Let =O (c2/a I)
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together the following substitutions:

Ok (kl1/k2y,)

91= X2

92

then Equation C-61 becomes:

k ((~.52-(i a)2j2  tan '.4 [0 1Tija (i)2]/g2

+ 4 ~)2 _ (iZ)2]/g1 (tan ' 4[-Bj - (i-a) 2 1/g, 0 (C-63)

Of course, Equations C-62 and C-63 are identical, which is what the

two sets of substitutions are designed for.

To solve for (Fiji) from Equation C-63, first consider the case

for i # 0. Since 0 l>1 hence there could be roots of (T1ja) such

that the arguments of the tangent terms in Equation C-63 become of
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opposite signs. The roots of (WijE) then lie between the lower limit

of i//-] and the upper limit of (C). The eigen-value equation.

reduced from Equation C-63 becomes:

- $i 2 -C~ 1 i)2 /91 tanh(* 4i(ii)2 - (78jji)2h/g1)

- ~ tan j 4r~~~ 2  - )2192)=

(C-64)

In Equation C-64, the first term is always negative, therefore

the value of ( tj.) satisfying Equation C-64 must be such that the

angular argument in the second term must be in odd quadrants. Hence,

a straightforward search for the roots can be initiated. Of course,

when I = 0, Equation C-64 is moot and the full Equation C-62 must be

used.

For the succeeding range, i.e., (Xiita) > (7), solution for the

roots can be simplified by observing that the terms in Equation C-62

must be of opposite signs. Hence, by starting with the argument of the

first term in the first quadrant, then the equation is satisfied by

the argument of the second term located in the second or fourth

quadrant. The procedure Is systematized by using a search index K for

each range of search for the root.
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(i) K - 0. The eigen-values ('94f) are determined from Equation C-64

and are bounded by the following limits:

(07)2/00 < -2j), <(a)2

The argument in the second term of Equation C-64 must be in an

odd quadrant to satisfy the equation.

Of course, the search described in this range is only

valid if i # 0. Otherwise, the search must start with K = 1.

(ii) K = 1. Here the index K = 1 indicates that search for the roots

("Nia) such that the argument of the first term of Equation C-62

is in the first quadrant. Accordingly, the argument of the

second term of Equation C-62 must be in an even quadrant. The

range of ( tja) can be expressed by:

(K- ,) I< 4 ( )2 -(i)
2]/g1  7T

(K K7

Or,

[gl(K - 1)2/01 + (7)2] < (X ja)2  < [gl(K/ 1)
2 + (1a)2]

Within these two limits of (i4ja), possible roots of (Irtja)

are to be located such that the argument of the second term is

in the second or fourth quadrants.
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(iii) K 2. In this range, the argument of the first term is in

the second quadrant and the lower and upper limits on

('&ji) are defined by those shown for K - 1. The roots of

Ja) are those for which the argument of the second term

Equation C-62 is in an odd quadrant.

i.*
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